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Abstract: - Estimation of model parameters (3-D frequencies), based on the high resolution spectral analysis 
methods known by their performances and their precision such as 3-D ESPRIT, remains a problem which is 
essential in the modeling of the signals by a sum of 3-D complexes exponential (3-D SCE model) embedded in 
an additive gaussian noise. Indeed, good results are obtained when the noise is white and by using the Second 
Order Statistics (autocorrelations), but if it becomes colored, the results are degraded which forces us to remedy 
this problem, to think about the Higher Order Statistics (cumulants). To verify the efficiency of estimators of 3-
D frequency, we calculate the asymptotic Cramer-Rao Bound (CRB).  
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1 Introduction 

The modeling of signals embedded in noise 
occupies a very important place in the areas of 
research these last years. It’s a technique used in 
several fields and applications such as 
telecommunications, treatment of antenna and 
image processing. 

Spectral analysis methods can be classified into 
two categories: scanning methods and high-
resolution methods named also analytical methods 
or subspace approach. The first category trays to 
restore spectral information by the mean of a 
functional depending of a frequency vector; these 
methods are also known as pseudo-spectrum. The 
second family includes the methods that exploit the 
inherent matrix structure in 3-D SCE model. These 
methods contain a phase of estimating the triplets 
frequencies contained in the model; we cite the 
MEMP method [1] or its extensions in 3-D case [2] 
[3], the ACMP method [4] and ESPRIT method [5] 
and their extension for 2-D signals [6] [7] and in the 
3-D case [8].  

The Higher Order Statistics (HOS) [3] [9] [10] 
[11] are essentially used in complement with the 
Second Order Statistics (SOS). Indeed, they give a 
more complete description of data and their 
properties and they allow the resolution of insoluble 
problems particularly when the noise is colored. In 

this work, we will apply this approach to the new 3-
D ESPRIT method developed in [8].  

Generally the Cramer-Rao bound [12][13][14] 
allows to fix a lower limit to the precision which it 
can be to reach in the estimator of one or more 
parameters. The calculation of this bound in signal 
processing is often very interesting. Indeed, in 
theoretical problems, an estimator that reaches the 
Cramer-Rao bound is therefore known as efficient. 

This paper is organized as follows: section 2 
presents the 3-D SCE model. In section 3, fourth 
order cumulant are developed then cumulants of the 
new 3-D ESPRIT method are calculated. In section 
4 the Cramer-Rao bound are developed. The 
simulation results and comparison are presented in 
section 5. Finally, the work ends with a conclusion 
and perspectives.  
 
2 Problem Formulation 
Let us consider that every voxel ),,( tnmy  of 
block of the observed image { }),,( tnmy  
corresponds to the sum of two terms: 

),,(),,(),,( tnmbtnmxtnmy +=   (1) 
With  Mm ≤≤1 , Nn ≤≤1 and Tt ≤≤1  
The useful signal ),,( tnmx  is modeled as 
follows: 
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The K components of the signal are defined by the 
frequency triplets{ }iii fff 321 ,, , the amplitudes { }ia
and the phases { }iϕ .  

The component ),,( tnmb  is the gaussian 
additive colored noise. 
The problem with we del here is how to estimate the 
K 3-D frequencies { }iii fff 321 ,,  and to estimate 
their CBR.  
 
3 Cumulant based new 3-D ESPRIT 
method 
3.1 Fourth Order Cumulant for 3-D data 
In this paragraph, the indices are noted:  

)3,2,1( mmmm = , )3,2,1( ffff = , )3,2,1( hhhh = , )3,2,1( αααα =  
and )3,2,1( 321 hmhmhmhm +++=+

 
 

To develop the techniques for high resolution 
estimation from the higher order statistics, we use 
the fourth cumulant. With the previous notation, the 
fourth cumulants of the observation are defined by:  

]l)(myk),y(m,h)(my),([),,( **
4 +++= myCumlkhC y    (3) 

 
and the fourth-order cumulant is given by:  
 

)]()([)]()([
)]()([)]()([)]()([)]()([

)]()()()([)](),(),(),([

kyjyElyiyE
lyjyEkyiyElykyEjyiyE

lykyjyiyElykyjyiyCum

−
−−

=   (4) 

 
Where (*) denotes complex conjugate operator, and 
E is the expectation operator 
By taking into account the model of the noisy 
observations given in (1), the fourth cumulant of the 
observations are given by:   

),,(4),,(4),,(4 lkhbClkhxClkhyC +=    (5) 

 
However the higher order statistics than two for 
gaussian signals do not bring information: the 
second order statistics are zero. Thus, the fourth 
cumulant of the observations coincide theoretically 
with non-noisy observations:  

),,(4),,(4 lkhxClkhyC =  (6) 

 
It is clear that with the higher order statistics than 2, 
we can theoretically eliminate the noise. Moreover, 
the fourth-order cumulants of the considered 3-D 
harmonic process verifies the following relation: 

∑
=

++−−=
K

i
flkhjalkhyC T

ii
1

])(2exp[),,(4
4 π  (7) 

In the following, we consider only the diagonal slice 
called the fourth cumulant defined as follows: 

),,()( 44 hhhChC yy = , )3,2,1( hhhh =  (8) 

The two equations (6) and (7) allows us to write:  

∑
=

++−=
K

i
iiiiy fhfhfhjahC

1
332211

4
4 )](2exp[)( π  (9) 

 
The equation (9) shows that the diagonal of the 
fourth cumulants contains all the useful information 
to estimate the frequencies of the harmonic model 
and it is the basis of the extension of the high 
resolution techniques.   
 
3.2 Estimation of the frequencies in the third 
dimension   
To estimate the frequency we use the special 
average assuming the ergodicity of the process y . 

Consider a PxQxL block for estimating the
^

4 yC . 

To estimate the frequencies of the third dimension 
{ }K

iif 13 = , we consider the PP× triply Teoplitz 
matrix (Teoplitz block-block Teoplitz matrix) given 
by:   
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For each )]1(),1([ −−−∈ PPp , Cp is the QQ×  
matrix having a Toeplitz-block-Toeplitz structure 
such as:  
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and each block q

pC , where )]1(),1([ −−−∈ QQq  is 
an LL×  Teoplitz matrix given by: 
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 (12) 
The matrix of the fourth cumulant can be written as 
follows: 

H
KPQLKPQLy SSC 1

],[
1

],[1, Ψ=  (13) 
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Where: 
Ψ is the KK ×  diagonal matrix given by: 

)( 4

1
i

Ki
adiag −=Ψ

≤≤
 (14) 

H is the Hermitian operator 
1

],[ KPQLS  is the KPQL ×  3-D Vandermonde matrix 
having the following form: 

],1,2,3,,,11,21,31[1
],[ PKsQKsLKsPsQsLsKPQLS ⊗⊗⊗⊗= L

 (15) 
 
Where : 

TGmnfjmnfjGmns ]))1(2exp(....)2exp(1[, −= ππ  (16) 

 
For 3,2,1=m , Kn ,....,2,1=  and ⊗  is the 
Kronecker product.  
The 3-D Vandermonde matrix 1

],[ KPQLS  can be 
written according to the 2-D Vandermonde matrix

1
],[ KPQS : 
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Where 1
],[ KPS  is the 1-D Vandermonde. 

We denote by m
KGS ],[  the 1-D Vandermonde matrix 

associated with the frequencies { }K
imif 1=   defined by:  



















−−

=

))1(2exp(...))1(2exp(
.....

)2exp(...)2exp(
1...1

1

1
],[

GfjGfj

fjfj
S
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mKmm
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ππ  (19) 

 
m is the spatial dimension, 3,2,1=m , and G is the 
size of the related window in the m dimension, 

{ }LQPG ,,∈   
 
The diagonal mΦ  matrix is given by:  

))2(exp(
1

mi
Ki

m fjdiag π
≤≤

=Φ
 (20) 

 

Consider the eigenvalue decomposition of the 
matrix 1,yC : 

H
y UDUC =1,  (21) 

 
With 

],...,,,...,[ 11 PQLKK uuuuU += and )(
1

i
PQLi

diagD λ
≤≤

= (22) 

Where the obtained eigenvalue iλ are real and 
ordered in a decreasing order as follows: 

0...... 121 ===≥≥≥≥ + PQLKK λλλλλ  (23) 
 
Thus, the signal subspace is spanned by the columns 
of the matrix 1

],[ KPQLS  and by the eigenvectors of 

1,yC  associated with the K nonzero eigenvalues 

noted 1Us . This means that there exist a KK ×

invertible matrix 1Θ satisfying the relation: 

1
1

],[1 Θ= KPQLSUs  (24) 

The 3-D Vandermonde matrix 1
],[ KPQLS  can be 

partitioned in two different ways as in the following 
equation: 
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 (25) 

 
Similarly, we consider the partitionnements for the 
accessible matrix 1Us  

PQxxx

UsPQ

Us

xxx
U s

b

b
















−−−−=
















−−−−=

1

1

1  (26) 

1Us  (respectively 1Us ) is obtained from 1SU by 

eliminating  the PQ first rows (respectively the last  
PQ  rows).  
 
From equations (23), (24) and (25) we can write  







=ΘΦ

=Θ
−

11
1

3

11

1

1

UsEM
UsEM  (27) 

 







=ΘΦΘ

Θ=
−−

−

11
1

3
1

11

1
111
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 (28) 
 
Hence 

31
†

11
1

3
1

1 )( FUsUs ==ΘΦΘ −−  
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(.)† stands for the pseudo inverse operator. 
Therefore, the frequencies { }if3 contained in the 

matrix 3Φ  will be estimated from the eigenvalues 
of the matrix 

1
†

13 )( UsUsF =  
as follows: 

])][Im[log(
2
1

33 Ff ii λ
π

=  (29) 

 
3.3 Estimation of the frequencies in the first 
dimension   
To estimate the frequencies associated to the first 
dimension, we introduce a new matrix of cumulant 

2,yC (TBBT) built like previously. Indeed, it 

involves existence of an invertible matrix 2Θ  of 
size KK ×  verifying the relation:  

2
2

],[2 Θ= KQLPSUs  (30) 
 

The 3-D Vandermonde 2
],[ KQLPS  is given by:  
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With 2
],[ KQLS  and 2

],[ KQS  are the 2-D and 1-D 
Vandermonde matrix respectively.  
However the Kronecker product is not commutative, 
thus the matrix 1

],[ KPQLS and 2
],[ KQLPS  are joined by the 

following relation: 
1

],[
2
1

2
],[ KPQLKQLP SES =  (33) 

 
With 2

1E  is the permutation matrix given by:  

PL
ik

LQ
kj

P

i

Q

j

L

k

QP
ji EEEE ,

,
,

,
1 1 1

,
,

2
1 ⊗⊗= ∑∑∑

= = =

 (34) 

and QP
jiE ,

,  is the elementary permutation matrix of 
size QP ×  having the value 1 for the coordinates 
(i, j) and zeros elsewhere. 
Similarly for the matrix 2Us : 

1
2

11 UsEUs =  (35) 
 

The frequencies { }if1 contained in the matrix 1Φ  
will be estimated from the eigenvalues of the matrix 

2
†
21 sUsUF =  by:  

])][Im[log(
2
1

11 Ff ii λ
π

=  (36) 

 
3.4 Estimation of the frequencies in the 
second dimension  
As previously, to estimate the frequencies of the 
second dimension, we build the matrix of cumulants 

3,yC (TBBT) with 3Θ a matrix of size KK ×
verifying the relation:  

3
3

],[3 Θ= KQLPSUs  (37) 
 
The 3-D Vandermonde matrix 3

],[ KLPQS
 
is given by: 
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With 3
],[ KLPS
 

and 3
],[ KLS are the 2-D and 1-D 

Vandermonde matrix respectively.  
 
Similarly, we have the following relations:  

2
],[

3
2

3
],[ KQLPKLPQ SES =

 (40) 

2
3
23 UsEUs =  (41) 

With 3
2E  is the permutation matrix given by: 

QP
ik

PL
kj

Q

i

L

j

P

k
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ji EEEE ,

,
,
,

1 1 1

,
,

3
2 ⊗⊗= ∑∑∑

= = =

 (42) 

Finally, the frequencies { }if 2  contained in the matrix 

2Φ  will be estimated from the eigenvalues of the 

matrix 3
†
32 sUsUF = by: 

])][Im[log(
2
1

22 Ff ii λ
π

=  (43) 

 
At this level, the frequencies of each dimension are 
estimated, so the step of the pairing or the formation 
of frequential triplets is required. Indeed, we 
consider a matrix Θ  of size KK × satisfying: 
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Θ=Θ=Θ=Θ 321  (44) 

Then we build a matrix F from the matrices 1F , 2F
and 3F as: 

∆ΘΘ=+−++= −1
3212211 ))(1( FFFF αααα  (45) 

Where 1α and 1α are a scalar. 
 
In [8] we proposed a new 3-D ESPRIT method to 
estimate the frequential triplets. Indeed, we 
construct three permutation matrix 1P , 2P  and 3P as: 
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Hence we have the following relations:  
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Thus the new matrices 1F , 2F  and 3F  become:  
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And finally the frequencies { }if1 ,{ }if2 and{ }if3  

contained in the matrices '
1Φ , '

2Φ  and '
3Φ  will be 

estimated from the eigenvalues of the matrices '
1F , 

'
2F  and '

3F  by: 
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The steps of the new 3-D ESPRIT algorithm are 
summarized in table I. 

TABLE I  

STEPS OF THE NEW 3-D ESPRIT ALGORITHM

New 3-D ESPRIT 
algorithm 

 

Step 1: Compute the signal subspace 1Us  Eq (24), 2Us  Eq (30) and 3Us  Eq (37), by 
performing eigendecomposition of the sample cumulants matrix.  

Step 2: Build the tree matrices 1F  Eq (36), 2F  Eq (43) and 3F  Eq (29). 
Step 3: Diagonalization the linear combination DTTFFF 1

3212211 )1( −=−−++ αααα  
Eq (45). 

Step 4: Construct the tree matrices 1P , 2P  and 3P  Eq (46). 
Step 5: Extract the frequency components from the angles of the tree matrices '

1Φ , '
2Φ and 

'
3Φ  Eq (49). 

 
 
4 The Cramer-Rao Bound 
In this section, we develop the analytical expression 
for the asymptotic Cramer-Rao bound for the vector 
of the parameters of the no noisy useful signal xθ
[15]. For this we consider the following additional 
assumptions:   
A1: the spectral density )( fSb  of the additive noise 
is continuous and shows no localized maxima at 
frequencies Kkfk ,,1, L= .  

A2:  the parameters vectors xθ  and bθ  do not have 
any common element.  

 
 
Under these conditions, we first prove that the exact 
CRB for an unbiased estimator T

bx ]ˆ,ˆ[ˆ θθθ =  block 
diagonal matrix given  
 









=

)ˆ(0
0)ˆ()ˆ(

b

x

BCR
BCRBCR

θ
θθ  (50) 
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The (k,l)th element of the associated vector with the 
BCR xθ  is given by the following relation:  

[ ]








∂
∂

∂
∂

= −−
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x
H

klx b
BCR

)(
)(

)(
)(

Re2)ˆ( 11

θ
θxΓ

θ
θxθ θ  (51) 

Where {}.Re  denotes the real part of the complex 
quantity in question and 

bθΓ is the autocorrelation 
matrix of the noise. The vector of no noisy 
observations )( xθx is:  

T
x

xx

xxx

TNMx
NMxNx

Mxx

)],1,1,1(,

),,0,1,1(,),,0,1,0(
,),,0,0,1(,),,0,0,0([)(
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−−−
−=

L
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LL

  (52) 

For the considered problem, the asymptotic CRB is given 
by the following limit: 

JxJJx BCRAsBCR KθKθ )ˆ(lim)ˆ(
∞→

=           (53) 

Where MNTJ =  and JK is a normalization matrix, 

diagonal by block, of size KK 55 ×  defined by 
DIK ⊗= KJ  (54) 

With KI  the K  identity matrix  

),,,,( JTJNJMJJdiag=D  and ⊗  
denotes the Kronecker product.  
By developing the derivative of the vector )( xθx , we 
demonstrate that the expression (47) can be written as 
follows: 

{ }[ ] 11Re
2
1)ˆ( −−= GΓGθ

b

H
xBCR θ  (55) 

Where G  is a KJ 5× matrix given by the 
concatenation of gradients vectors 

x

x
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 (57) 
Using the two equations (47) and (51), the equation (49) 
become : 

[ ]{ } 11limRe
2
1)ˆ( −−

∞→
= J

H
JJx b

AsBCR GKΓGKθ θ  (58)  

The analytical expression of the matrix HG  obtained 
from the equations (52) and (54), and the TBBT 

structure of the autocorrelation matrix of additive 
noise

bθΓ , allows us to show that the matrix of 
asymptotic CRB is given by: 
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Where each block [ ]kAsBCR  is given according to 
the spectral density of the process additive noise 

)(mb  as follows: 
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Thus, for Kk ,,1 L= , the asymptotic expressions of 

the CRB [ ],ˆ,ˆ,ˆ,ˆ,ˆ 321 kkkkk fffc ϕ  are the diagonal 

elements of the matrix [ ]kAsBCR . It is noticed that 
the CRB relating to the frequencies and to the phase 
is inversely proportional to the local signal to noise 
ratio (SNR) )(2

kbkk fScSNR = . 

 
 
5 Experimental results  
In this section, we present some numerical 
simulation examples. Our approach is tested on a 3-
D SCE model. The data are generated according to 
the model of equation (1). We consider three waves 
i.e. K=3 with the amplitude 200=ia , the 3-D 
frequencies are given in Table II. The data and the 
sizes of the cumulants matrix are respectively

)32,32,32(),,( =TNM , and )3,3,3(),,( =LQP . 
The colored gaussian noise is obtained by filtering 
the white gaussian noise by a 3-D filter AR [16] 
[17] [18]. We consider the value of signal to noise 
ratio dB 20=SNR . 
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TABLE II  

3-D  FREQUENCIES USED IN SIMULATION EXAMPLE  
 f1i f2i f3i 

1st  wave 0.1100 0.1400 0.1700 
2nd wave 0.2400 0.2300 0.2100 
3rd wave 0.4500 0.4800 0.4700 

TABLE III   

3-D FREQUENCIES  ESTIMATED FOR SNR=20 DB 
 F1I F2I F3I 

HOS SOS HOS SOS HOS SOS 
1st  

wave 
0.1102 0.1092 0.1399 0.1390 0.1701 0.1681 

2nd 
wave 

0.2401 0.2386 0.2303 0.2270 0.2098 0.2090 

3th 
wave 

0.4500 0.4492 0.4798 0.4779 0.4702 0.4689 

 

 
Fig. 1: Estimation-error variance versus the SNR. 

 

New 3-D ESPRIT algorithm’s computational 
complexity: 

The main steps of the new 3-D ESPRIT algorithm 
are: 

(1) According to [19][20] singular value 
decomposition (SVD) of the cumulants matrix. 
The total number of floating point operations 
required for the computing the SVD of the

)1)(1)(1( +−+−+−× LTQNPMZ Teoplitz 

block-block Teoplitz matrix 1yC is  

)3/8)1)(1)(1((8 2 ZLTQNPMZNSVD ++−+−+−=
where PQLZ =  is defined such that PxQxL
denoted the size of the observation window. 

(2) Build the tree matrices 1F , 2F  and 3F  by 
applying selection matrices to the signal 
subspaces 1Us , 2Us  and 3Us .  Applying the 
selection matrices requires no computation; it 

only requires a set of memory accesses. 
However, memory accesses could be time 
consuming. Thus, we assume that a memory 
accesses is equal to a half multiplication [20]. To 
construct the matrices 1F , 2F  and 3F  the 
computation load is approximately equal to 

)2( LQPZp −−−  for computing 1Us , 1Us , 

2Us , 2Us , 3Us , 3Us and 

)2(16 2 LQPZp −−−  for computing the tree 
pseudo-inverses, and finally 

)2(8 2 LQPZp −−− for computing the tree 
inner products of complex matrices 

iii sUsUF †
=  3,2,1=i . The global cost is 

approximately
)24)(2( 2 ppLQPZNbuild +−−−= , where p 

is the number of frequencies. 
(3) Diagonalyzing the linear combination of 1F , 2F  

and 3F  i.e. 

DTTFFF 1
3212211 )1( −=−−++ αααα costs 

about 380 p , applying the transformation T to 

the tree matrices costs 316 p  for the inversion 
of pxp matrix T and four pp ×  matrix 

multiplications 323p . Hence, the total number 

of operations amount to  3128pNdiag = . 

(4) Construct of the tree matrices 1P , 2P  and 3P  
only required a set of memory accesses. Thus, 
we assume that a memory accesses is equal to a 
half multiplication [20]. Hence, the total number 
of operations amount to

))12((3 23 −+= KKKNconst . 

The total number of floating point operations 
needed for the new 3-D ESPRIT algorithm is 
obtained by summing the above components. Thus, 
the numbers represent number of flops per 

TNM ××  data block.  

))12((3
128)24)(2(

)3/8)1)(1)(1((8

23

32

2

−++

++−−−+

++−+−+−=

KKK
pppLQPZ

ZLTQNPMZNESPRIT

 

or asymptotically the order )( 2 MNTZϑ .  
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6 Conclusion 
In this paper, we showed the interest of higher order 
statistics compared to the second order statistics in 
3-D frequencies. Indeed, the estimation of the 3-D 
frequencies by the new 3-D ESPRIT method when 
the signal is embedded in a colored gaussian noise 
and by using the cumulants gives good 
performances that by using the autocorrelations. The 
development of theoretical expressions of the 
asymptotic Cramer-Rao bound of the parameters 
model, in particular frequency 3-D, is presented.  
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